VIP园地
   
计量法规
   
  OIML国际建议
   
  国家计量检定规程目录
   
  国家标准
   
  中华人民共和国计量法
   
  部门、地方计量检定规程目录
   
   
 
 
相关网站
 
 
 技术论文

天然气混合物临界流系数的确定


 英国 James T R Watson

一、概 述


  英国国家工程实验室(NEL)已开发出用于多种单一气体和天然气混合物的软件,能够准确、可靠、具有溯源性地确定临界流系数C*与现有文献中的数值相比,使用这种方法得到的C*值具有小得多的系统误差,因此能得到更一致和更可靠的流量计检定结果。本文概要介绍由状态方程计算临界流系数和其他流量参数的方法。
  状态方程与音速喷嘴技术之间的关系在R、C、Johnson的有关实际气体对音速喷嘴影响的论文中给出。流体动力学研究表明,在音速喷嘴喉部的焓不同于喷嘴上游滞止状态下的焓,其差值正比于喷嘴喉部气流速度的平方。对于临界流该速度等于喉部的气体声速。给出这个关系,就可以在经过上游滞止点的等熵线上确定出相对于喷嘴喉部状态的参校点。
  为确定上述情况,NEL开发研究了两个不同的方法,本文给出了较快捷的第二种方法。经测试,对于甲烷、氩气和氮气,这两种方法都精确地给出了相同的临界流系数及其它参数值。要求输入的参数是:
  l、在上游计量状态下的压力和温度;
  2、喷嘴内径与上游计量点管道内径之比。
  可以计算出下列参数:
  l、临界流系数C*
  2、通过喷嘴喉部单位面积的质量流量;
  3、喷嘴喉部的气体流量;
  4、临界压力、温度和密度比;
  5、气体在滞止状态和在喷嘴喉部的有工程意义的所有热物理性能参数。


二、由热力学状态方程计算通过音速喷嘴的临界流


  通过临界流喷嘴的实际气体的单位面积的理论质量流量,由Johnson给出。
                             (1)
式中: po--上游滞止状态下气体压力,Pa;
    To--上游滞止状态下气体温度,K;
    R--气体常数,R=8.31451 J/mol·K;
    M--气体摩尔质量,kg/mol;
    C*--临界流系数,无量纲。
  公式(1)的假定条件是气体作一维等熵流动。
  Johnson指出,能量方程要求上游滞止状态和喷嘴喉部状态之间焓的变化dh与流体的速度v有关,dh=-vdv。在上游滞止状态(角标为0)和喷嘴喉部状态(角标为1)之间对该式积分,得到:
                            (2)
式中上游流速为Vo,一般取0。
  由于在上游计量点存在有限的流动,在上面的方程中保留了Vo。将式(2)两边除以声速wt,并重新整理得到:
          
式中:M--喷嘴喉部的气体马赫数。
  对于喷嘴处的临界流,马赫数为1,这样,在喷嘴喉部,焓和熵的状态满足下式:
                              (3)
                              (4)
给出测试和校准气体的可靠的热力学方程型式,可以求解热力学状态方程,得到具有焓ht和熵st的状态点,这个状态点对应于喷嘴喉部的状态。一旦确定了该状态点,在喷嘴喉部的气体热力学性质成为已知,所有需要的流动参数可以被计算出。


三、热力学方程和流动方程的求解方法


  给出上游滞止状态下的压力P0和温度T0,可以解热力学状态方程,得到流体的相应焓h0和熵s0。在喷嘴喉部,流体的熵可取作不变,但是焓随着动能的增加而降低。喉部的的状态是未知的,要由迭代法确定。由于流体的状态方程同是密度和温度的自然函数,利用这些变量是更有效的。开始时,我们取喉部条件下密度和温度的假定值为ρ(1)和T(1),然后这两个值可以应用如下程序进行改进。
  由于h和s可以被考虑是密度和温度的函数,对其微分得:
                     (5)
依据热力学性质,利用易于计算的特性参数(如:a、b、c和d)来替代上述4个偏微分,得到以下表达式:
                   (6)
式中 a(ρ(n),T(n))等量值是在喉部密度和温度的第n次估计下计算的。
  对一个音速喷嘴的临界流,其流动状态应满足:
                        (7)
联立热力学方程式(6)和流动方程式(7),得到
         (8)
根据已知的或可计算的量,可以得到对△ρ和△T的第n次估算的求解表达式。然后,用△ρ和△T的计算值求解出经改进的喷嘴喉部的密度和温度估算值,即:
                             (9)
重复这个替代过程,直到获得收敛的。一旦在喉部的密度和温度被确定,在这个状态下的气体所有其它热力学性质和流量参数可以被计算出来,即:
  喷嘴喉部速度:Vt=wt
  通过喷嘴的单位面积质量流量:=ρtwt
  临界流系数:
  喷嘴喉部与上游的压力比:Pc=Pt/P0
  喷嘴喉部与上游的温度比:Tc=Tt/T0
  喷嘴喉部与上游的密度比:ρc=ρt0


四、软 件


  根据ENL对AGA 8状态方程的扩展版本,已开发出用于天然气混合物的临界流系数和其它流量参数计算的Fortran语言程序(根据最新的标准级的状态方程,已开发出用于许多单一气体的程序。该方程是通用的,可应用于很宽范围的气体和气体混合物。对于这些程序相关的热力学软件包的要求是:
  l、给出温度和压力自变量,可以计算出气体的热力学性质;
  2、给出温度和密度自变量,可以计算出气体的热力学性质;
  3、由于软件包输出的热力学性质包括公式(6)所要求的一套予设参数;
  4、热力学基本公式的温度下限至少低于滞止温度下限50 K以下;
  5、流体或流体混合物在滞止点或在喷嘴喉部都应是单相气体状态。
  NEL的扩展 AGA 8状态方程软件满足上述前四个条件,然而,由于缺乏耐用的相平衡软件包,检查后一个状态是否符合是不可能的。对于某些混合物或许会碰上应用困难,即:
  l、滞止温度低于60℃的富气混合物;
  2、滞止温度低于-10℃的贫气混合物。
  应该注意,AGA 8状态方程被发展应用于在单相气体范畴的贫气混合物,而不能用于靠近相边界或处于相平衡的计算。尽管最近在NEL对富气混合物的测量工作已扩展了AGA 8方程的应用范围,但上面的限制仍要保留。
  经过认真确认,该软件程序对下列许多气体是有效的:
  l、在一定压力温度范围内,该软件包已计算三种纯净流体(甲烷、氮气和二氧化碳)的热力学性质和其它流动参数,并且将这些值与用最新的标准级热力学公式或软件的计算值进行了相应的比较。
  2、用该软件对于空气(78.2% N2、29.6% O2和0.92% Ar)的热力学性质和其它流动参数进行了计算,并与用最新的标准级热力学公式的计算值进行了验证,后者适用于无干二氧化碳的空气。
  在每一个测试中,临界流系数的差值均很好的落在AGA 8方程的不确定度范围内。


五、对C*计算的实际影响


  C*的任何实际计算必须考虑限定的喉径与管径的比β,和气体在上游计量位置的速度。
诸如ISO 9300中列表给出的 C*值等,是基于上述假设计算的,即喉径与上游管径相比非常小且可忽略,气体在上游计量点的速度为零。计算表明,临界流系数随β值单调增加。在低产值时,C*的变化很小且一般可以忽略;然而,对于β值大于0.15时,C*值的变化要明显得多。由于这个限制与流动状态有关,因此,除非β值非常小,否则,在所有的C*计算中要求下列改进。
  实际上,对上游计量点被测压力Pm和被测温度Tm作分析,会发现更加复杂的情况。一般压力测量是取得静压Ps的真实值,然而,从气体到温度探头的热值传递和从探头和温度计插管到管壁的热传导,被测的温度Tm是静态温度Ts和滞止温度T0之间的某一温度。它们之间的关系通常依照温度探头恢复系数Rf来表述。
                             (10)
在公式(10)中,当Rf趋近于0时,被测温度接近于静态温度;反之,当Rf趋近于1小时,被测温度接近于滞止温度。应该注意,上游温度测量误差对临界流系数计算值的影响小于压力测量误差的影响。由C*的定义,给出了下面的公式:
                                (11)
温度项测量误差影响较小的原因是温度项是以分数幂增加的,另外,滞止温度和静态温度之间的变化相应的要小于同状态下的压力变化。
  有两种方法计算一个实际计量条件下的临界流系数,但这两种方法都要求比第三节所述方法有更多层次的迭代。
  l、将测量压力和温度转换到滞止状态值,或
  2、用式(10)将测量温度转换到静态值。
  我们选择后面的方法,在假设上游计量点的静态压力、温度和速度为已知的情况下开始迭代。
  第一步:作为静态条件的第一个估计值,我们取:
  第二步:应用第三节的方法,可以得到气体在喷嘴喉部的密度 和速度估计值。根据喷嘴和管道的几何关系,根据质量平衡方程,可以获得改进的上游速度估计值
                
式中: Vs--对应于在上游计量点静止状态的气体速度;
    ρs--对应于在上游计量点静止状态的密度。
  第三步:使用与第三节所述相似的方法,称为等熵线压缩方法,可以得到滞止状态的一个估计值
  第四步:然后使用已知的Tm值和滞止温度估计值,可以由式(10)计算出一个改进的 Ts值,即:
                
  第五步:使用,Ps=Pm重复进行第二到第四步,直至得到Vs和Ts的收敛值。


六、理论质量流量


  在许多情况下,考虑用单位面积理论质量流量中 比用临界流系数C*更方便。这种方法可用于天然气混合物计量,且喷嘴喉径与上游管道直径之比β较大的场合,比如说β>O.15。
临界流系数C*由Johnson定义为:
                                 (12)
它是滞止温度T0、滞止压力P0和摩尔质量M的函数,且后者与组分有关,如在第五节所讨论的,在高β值时,上游被测温度和压力不同于滞止状态的值。随着β值的变化,C*也会随滞止条件而变化。C*对组分的依赖程度比质量流量弱,而质量流量是喷嘴喉部的密度与声速之积,即:
                           (13)
式中质量是气体组分x、β值和被测温度及压力的函数。随β值和气体组分变化容易理解。在许多情况下,更感兴趣的不是C*系数值,而是实际通过喷嘴的质量流量,由下式给出:
                          (14)
式中: At--喷嘴喉部的横截面积;
    A--上液管道横截面积;
    Cd--由喷嘴标定得到的流出系数。


资料来源于NEL《气体流量计量研讨会》1998年
翻译:潘兆柏
审校:郑 琦

 

 

 
| 首 页 | 常用图表 | 网站建设 | 网站地图 | 关于我们 | 请您留言 | 联系方式
Copyright © 2001-2008 Chinaflow.com.cn. All Right Server.
Tel: 010-64291994 62450161 Fax: 010-64291994 62450161 手机:13693121531